

NEW ALKENE-ALKYNE- γ -LACTONES ISOLATED BY HPCCC AND CYTOTOXIC POTENTIAL FROM *Sextonia rubra*

***Sarah Larissa Gomes Flores*^{1*}, Isadora Moita de Araújo¹, João Vitor de Melo Pereira⁴, Celina de Jesus Guimarães^{2,4}, Colin Bright³, Claudia Pessoa⁴, Gilda Guimarães Leitão⁵, Anderson Cavalcante Guimarães⁶**

***sarah.flores@ufam.edu.br**

1-Departamento de Química, Instituto de Ciências Exatas-UFAM, 69077-00, Manaus, AM, Brazil. 2-Fundaçao Centro de Oncologia do Estado do Amazonas, 69040-040, Manaus, AM, Brazil. 3-Dynamic Extractions Ltd, Mamhilad House, Rowan Suite, Mamhilad Park Estate, Mamhilad, UK NP4 0HZ., UK. 4-Núcleo de Pesquisa e Desenvolvimento de Medicamentos-UFC, 60020-181, Fortaleza, CE, Brazil. 5- Instituto de Pesquisa de Produtos Naturais-UFRJ, 21941-630, Rio de Janeiro, RJ, Brazil.

Sextonia rubra (Lauraceae) is known as raw material for the timber industry and is the only member of its genus found in northern Brazil. Research indicates that *S. rubra* has larvicidal, antioxidant, termiticidal, and fungicidal properties, mainly due to the biomarker compounds rubrenolide and rubrynlolide. This study reports the isolation of two novel γ -lactones from the hexane extract of *S. rubra* bark by high-performance counter-current chromatography (HPCCC) and evaluates their cytotoxic properties. HPCCC is a reproducible method that avoids loss of samples by adsorption or denaturation and uses analytical-grade solvents. The fractions were analyzed using thin-layer chromatography and nuclear magnetic resonance. The hexane extract (600 mg) was fractionated by HPCCC, using the preparative column in a step-gradient normal phase elution mode. The solvent systems consisted of eight ratios about hexane-ethyl acetate-methanol-water (HEMWat, v/v/v/v) S28 (1:0:1:0), S26 (9/1/9/1), S24 (5/1/5/1), S22 (3/1/3/1), S20 (2/1/2/1), S18 (6/5/6/5), S16 (5/6/5/6) and S14 (1/2/1/2)¹. The lower phase was employed as the stationary phase, while the upper phases served as mobile phases. The stationary phase retention (*S_f*) at the first step of the gradient was 86%. Fractions F76 (35.4 mg) and F77 (36.0 mg), rich in γ -lactones were purified by analytical column in a step-gradient, normal elution mode (HEMWat) S21 (5/2/5/2), S20, S19 (3/2/3/2) and S18, for both samples the *S_f* was 75%. This procedure yielded two main samples: **F76-16** (2.5 mg) and **F77-66** (3.8 mg). The NMR data analysis proposed two new lactones 9-acetyl-5-dec-18-ynyl-3-(7-hydroxybutyl)oxolan-2-one (**1**) and 9-acetyl-5-dec-18-enyl-3-(7-hydroxybutyl)oxolan-2-one (**2**). The compound (**1**) presented cytotoxic activity against prostate cancer, inhibiting 63 % of the cells with IC₅₀ of 4.70 μ g/mL and against promyelocytic leukemia cells a IC₅₀ of 6.80 μ g/mL. The isolation was performed in two steps, without the use of any adsorption chromatography procedure. Furthermore, **1** should be subject to further investigation into the mechanism of action.

¹ N. Sumner. Developing counter-current chromatography to meet the needs of pharmaceutical discovery. Journal of Chromatography v. 1218, n. 36, p. 6107-6113, 2011

Keywords: Louro Gamela, Counter-current Chromatography, Prostate cancer, NMR.

